$$\frac{\nabla III}{\sum} Whitney's theorem for maps between two-manifolds}$$
Let $m = n = 2$ and $f \in C^{\infty}(M, N)$ one-generic

$$= \sum \sum \Sigma'(f) \text{ is one-dim submf of } M$$
Thum I.8

$$\cdot \Sigma'(f) = \phi \quad \text{for } i \ge 2.$$
Cor II.8: If f two-generic, then

$$\Sigma^{(1)}(f) \text{ is } 0 \text{ -dim submf and no}$$

$$= ther \text{ cases occur}$$

$$\cdot x \in \Sigma'(f) \text{ thun either}$$

$$a) \quad T_{x} \Sigma'(f) \notin \ker df(x) = T_{x}M$$

$$\Rightarrow x \in \Sigma^{(1)}(f)$$

$$b) \quad T_{x} \Sigma'(f) = \ker df(x) \Rightarrow x \in \Sigma^{(1)}(f)$$

$$(cf. exercises 5.4 \text{ and } 2.2)$$

Whitney showed that these two examples are in fact the only stable/generic cases, a) fold, b) pleat/cusp.

I. Theorem: If a) holds, then x is a
fold point, i.e. there exist coordinates around
x and for, s.t. f is locally given by
$$(x_1, x_2) \mapsto (x_1^2, x_2)$$

$$\frac{P_{roof}}{a} = \int f_{1} \Xi'(f) \text{ is immension at } x, \text{ so}$$

$$\int e^{-\alpha t} f_{1} \Xi'(f) \text{ is immension at } x, \text{ so}$$

$$\int e^{-\alpha t} f_{1} \Xi'(f) = \int e^{-\alpha t} f_{1} \Xi'(f) =$$

So, loc. f is given by $(x_1, x_2) \mapsto (h(x_1, x_2), x_2)$. From 1. $\Sigma'(f) = \{x_1 = 0\}$ and also $\Sigma'(f) = \{\frac{\partial h}{\partial x_1} = 0\}$

$$2. \quad \left\{ \left(z'(1) \right) = \left\{ y_i = 0 \right\} \quad \Longrightarrow \quad h_{|x_i| = 0} = 0$$

3.
$$\frac{3^{2}h}{3^{2}x_{i}^{2}}|_{x_{i}=0}$$
 (bec. f is one-generic,
 $j'f \oplus S'$ in $J'(M,N)$)

we conclude $h(x_1, x_2) = x_1^2$, ll)

Now case b),
$$T_{x} \mathcal{E}'(f) = \ker df(x)$$
.

Now case b),
$$T_x \mathcal{E}'(f) = \ker df(x)$$
.
Let ξ be a vector field along $\mathcal{E}'(f)$ with
 $\xi \neq 0$ and $\xi(x') \in \ker df(x')$ $\forall x' \in U_{x'} \mathcal{E}'(f)$.
Let $\mathcal{E}'(f)$ locally be given by $\xi k = 0 \int$ with
 k smooth, $dk \neq 0$.
We consider the function
 $K : \mathcal{E}'(f) \rightarrow IR$ $x' \mapsto dk(x') \cdot \xi(x')$
Which vanishes at x .
 $2 \cdot \operatorname{Def}$: x is a simple cusp if it is a
simple zero of K .

Exerc: Show this defn is indep. of the choice (Z,k).

3. Thus: If x is a simple cusp, then there
are coordinates around x and fixes such that
f is locally given by
$$(x_1, x_2) \mapsto (x_1^3 + x_1 x_2, x_2)$$
.

Proof:
As in the proof of them 1 choose coord.
$$(x_{i}, x_{2})$$

and (y_{i}, y_{2}) set.
 $f: (x_{i}, x_{2}) \mapsto (h(x_{i}, x_{2}), x_{2})$
and $df(x_{i}, x_{2}) = \begin{pmatrix} \frac{2h}{2x_{i}} & \frac{2h}{2x_{2}} \\ 0 & i \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & i \end{pmatrix}$

i.e.
$$\frac{\partial L}{\partial x_1}(o_1 o) = \frac{\partial L}{\partial x_2}(o_1 o) = 0$$

but $d(\frac{\partial L}{\partial x_1})(o_1 o) \neq 0$ (bec. f is one-generic)

$$\Sigma'(f) = \begin{cases} \frac{2L}{3x_1} = 0 \end{cases}$$
 and ker $df = \langle \frac{2}{3x_1} \rangle$,
" $k'' \leftarrow in Def 2 \longrightarrow {}^{''} \xi''$

So if x is a simple cusp, then

$$\frac{\partial^{2} h}{\partial x_{i}^{2}} (0,0) = 0 \quad \text{and} \quad \frac{\partial^{3} h}{\partial x_{i}^{3}} (0,0) \neq 0.$$
Thus, at the origin: $h = \frac{\partial h}{\partial x_{i}} = \frac{\partial^{2} h}{\partial x_{i}^{2}} = 0$

$$\frac{\partial^{3} h}{\partial x_{i}^{3}} \neq 0$$

Malgrange preparation them: $h(x_1, x_2) = C(x_1, x_2) \left(x_1^3 + a_2(x_2) x_1^2 + a_1(x_2) x_1 + a_0(x_2) \right)$ with c and the a: smooth ($C(a_1a_2) \neq 0$.

$$(=) \chi_1^3 = \chi(h_1 \chi_2) + \beta(h_1 \chi_2) \cdot \chi_1 + \chi(h_1 \chi_2) \cdot \chi_1^2$$

$$(\Rightarrow) (x_i - A)^3 + B(x_i - A) = C \quad (\bigstar)$$

with $A_i B_i C (R^2 - R) = C \quad (\forall)$

1. Set $x_2 = 0$. * becomes $(x_1 - A(h(x_1, 0), 0))^3 + B(h(x_1, 0), 0) \cdot (x_1 - A(h(x_1, 0), 0)) = C(h(x_1, 0), 0)$

Since the leading order of
$$h(x_{i}, 0)$$
 is x_{i}^{3} ,
the LHS of $*$ is $x_{i}^{3} + higher order terms.The RHS of $*$ can only match this if
 $\partial_{i}C(0,0) \neq 0$.$

$$(x_1 - \partial_1 A \cdot h - \partial_2 A \cdot x_2)^3 + (\partial_1 B \cdot h + \partial_2 B \cdot x_2) \cdot$$
$$(x_1 - \partial_1 A \cdot h - \partial_2 A \cdot x_2) = \partial_1 C \cdot h + \partial_2 C \cdot x_2 .$$

"First" nonzero derivative of h at
$$(0,0)$$
 is $\Im_{X,\partial X_{2}}$ '
So $h \propto x_{1}x_{2} + x_{2}^{2} + \cdots$

$$\begin{cases} \Rightarrow \\ \end{pmatrix} = \left(\begin{array}{c} \chi_{1} - \partial_{1} A \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) - \partial_{2} A \cdot \chi_{2} \end{array} \right)^{3} \\ + \left(\partial_{1} B \cdot \left(\begin{array}{c} \chi_{1} \chi_{2} + \dots \right) + \partial_{2} B \cdot \chi_{2} \end{array} \right) \cdot \left(\begin{array}{c} \chi_{1} - \partial_{1} A \cdot \left(\begin{array}{c} \chi_{1} \chi_{2} + \dots \right) - \partial_{2} A \cdot \chi_{2} \end{array} \right) \\ = \\ \Rightarrow \\ \Rightarrow \\ \end{pmatrix}_{1} \subset \left(\begin{array}{c} \chi_{1} \chi_{2} + \dots \end{array} \right) + \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \end{bmatrix}_{1} \subset \left(\begin{array}{c} \chi_{1} \chi_{2} + \dots \right) + \\ \Rightarrow \\ \Rightarrow \\ \end{bmatrix}_{2} \subset \left(\begin{array}{c} \chi_{1} \chi_{2} + \dots \right) + \\ \Rightarrow \\ \Rightarrow \\ \end{bmatrix}_{2} \subset \left(\begin{array}{c} \chi_{1} \chi_{2} + \dots \right) + \\ \Rightarrow \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{1} \chi_{2} + \dots \right) + \\ \Rightarrow \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \\ \end{bmatrix}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2} + \dots \right) + \\ \end{array}_{2} C \cdot \left(\begin{array}{c} \chi_{2}$$

$$=) \quad \partial_z B(0,0) = \partial_z C(0,0) = 0 \qquad (by comparing linear)$$

and $\partial_z C(0,0) = 0 \qquad and quadratic terms /$

Now define new coordinates by
Now define new coordinates by

$$(\overline{x_{i}}, \overline{x_{i}}) = \phi(x_{i}, x_{i}) := (x_{i} - A(h_{i}, x_{i}), B(h_{i}, x_{i}))$$

$$d\phi(0,0) = \begin{pmatrix} 1 - \partial_{i}A(0,0) \cdot \partial_{i}h(0,0) & -\partial_{i}A(0,0) \partial_{i}h(0,0) \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & &$$

 $\begin{bmatrix} \zeta & \psi \\ C(h, x_2), & B(h, x_2) \end{bmatrix}$

$$= \left(\left(x_{1} - A(h_{1}, x_{2}) \right)^{3} + B(h_{1}, x_{2}) \cdot \left(x_{1} - A(h_{1}, x_{2}) \right), B(h_{1}, x_{2}) \right)$$

$$= \left(\overline{x}_{1}^{3} + \overline{x}_{2} \cdot \overline{x}_{1}, \overline{x}_{2} \right).$$

The sought-after set is given by the two-generic maps in
$$C^{\infty}(M,N)$$
.

1. Being two-generic is determined by
$$j^3f$$

(j^2f th S^{ij} is a condition on j^3f !)

2.
$$f$$
 two-generic => dim $\Sigma'(f) = 1$
dim $\Sigma''(f) = 0$
and no other singularities possible.

Suppose
$$f:(x_1, x_2) \mapsto (h(x_1, x_2), x_2)$$

with
$$\frac{\partial^k h}{\partial x_i^k} = 0$$
 for $k = 0, ..., 3$

Then define $\widehat{f}: (X_1, X_2) \mapsto (X_2, X(X_1, X_2), X_2)$

with

$$\begin{aligned} \alpha(x_{i,i}x_{2}) &= \frac{\partial_{222}h(0)}{6}x_{2}^{2} + \frac{\partial_{22}L(0)}{2}x_{2} \\ &+ \partial_{2}h(0) + \frac{\partial_{112}h(0)}{2}x_{i}^{2} + \frac{\partial_{12}h(0) \cdot x_{1}}{2} \\ &+ \frac{\partial_{122}h(0)}{2}x_{i} \cdot x_{2} \\ &+ \frac{\partial_{122}h(0)}{2}x_{i} \cdot x_{2} \\ &f hus the same 3-jet as f at (0,0), \\ &so by 7. also two-generic , but \\ &df = \begin{pmatrix} x_{2} \cdot \partial_{i}\alpha & \cdots \\ 0 & i \end{pmatrix}, so \sum_{i=1}^{i,i}(f) is 1-dim. \end{aligned}$$

If
$$n=2$$
, but $m \ge 3$, then we still find $\dim \Xi(f)=1$,
dim $\Xi^{ll'}(f)=0$ (in the generic case). However, there
are more types of folds and cusps possible.
For $N=R^2$ the situation stays quite simple, allowing
to study the source manifold M a la Morse
theory.

A starting point is the following observation: <u>S. Prop</u>: Let M compact and $f: M \rightarrow \mathbb{R}^2$ smooth \mathfrak{q} two-generic. Then $\Xi'(f)$ is a finite disjoint union of S²s and $\Xi''(f)$ is a finite collection of points, and no other singularities occur. <u>Proof</u>: Exercise.

For more applications in topology see the papers on the moodle page ...